Sunday, September 25, 2011

The Structure of Ignition Coil

       The ignition coil is a simple device which is basically a high-voltage transformer made up of two coils of wire. One coil of wire is called the primary coil. Wrapped around it is the secondary coil. The secondary coil normally has hundreds of times more turns of wire than the primary coil. The ignition coil looks like an electromagnet, but it is an inductor as well. The key to the coil's operation is what happens when the circuit is suddenly broken by the points. The magnetic field of the primary coil collapses rapidly. The secondary coil is engulfed by a powerful and changing magnetic field. This field induces a current in the coils -- a very high-voltage current (up to 100,000 volts) because of the number of coils in the secondary winding. The secondary coil feeds this voltage to the distributor via a very well insulated, high-voltage wire.

       In the ignition system, a distributor cap is used in an automobile's engine to cover the distributor and its internal rotor. It has one post for each cylinder, and in points ignition systems there is a central post for the current from the ignition coil coming into the distributor. In high energy ignition (HEI) systems there is no central post and the ignition coil sits on top of the distributor. On the inside of the cap there is a terminal that corresponds to each post, and the plug terminals are arranged around the circumference of the cap according to the firing order in order to send the secondary voltage to the proper spark plug at the right time.

       Car engines that use a mechanical ignition distributor may fail if they run into deep puddles because any water that leaks into the distributor can short out the electric current that should go through the spark plug, rerouting it directly to the body of the vehicle. This in turn causes the engine to stop as the fuel is not ignited in the cylinders. The distributor cap is a prime example of a component that eventually succumbs to heat and vibration. It is a relatively easy and inexpensive part to replace if its bakelite housing does not break or crack first. Carbon deposit accumulation or erosion of its metal terminals may also cause distributor-cap failure.

 

No comments:

Post a Comment